Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add filters

Language
Document Type
Year range
1.
Nathaniel L Matteson; Gabriel W Hassler; Ezra Kurzban; Madison A Schwab; Sarah A Perkins; Karthik Gangavarapu; Joshua I Levy; Edyth Parker; David Pride; Abbas Hakim; Peter De Hoff; Willi Cheung; Anelizze Castro-Martinez; Andrea Rivera; Anthony Veder; Ariana Rivera; Cassandra Wauer; Jacqueline Holmes; Jedediah Wilson; Shayla N Ngo; Ashley Plascencia; Elijah S Lawrence; Elizabeth W Smoot; Emily R Eisner; Rebecca Tsai; Marisol Chacon; Nathan A Baer; Phoebe Seaver; Rodolfo A Salido; Stefan Aigner; Toan T Ngo; Tom Barber; Tyler Ostrander; Rebecca Fielding-Miller; Elizabeth H Simmons; Oscar E Zazueta; Idanya Serafin-Higuera; Manuel Sanchez-Alavez; Jose L Moreno-Camacho; Abraham Garcia-Gil; Ashleigh R Murphy Schafer; Eric McDonald; Jeremy Corrigan; John D Malone; Sarah Stous; Seema Shah; Niema Moshiri; Alana Weiss; Catelyn Anderson; Christine M Aceves; Emily G Spencer; Emory C Hufbauer; Justin J Lee; Karthik S Ramesh; Kelly N Nguyen; Kieran Saucedo; Refugio Robles-Sikisaka; Kathleen M Fisch; Steven L Gonias; Amanda Birmingham; Daniel McDonald; Smruthi Karthikeyan; Natasha K Martin; Robert T Schooley; Agustin J Negrete; Horacio J Reyna; Jose R Chavez; Maria L Garcia; Jose M Cornejo-Bravo; David Becker; Magnus Isaksson; Nicole L Washington; William Lee; Richard S Garfein; Marco A Luna-Ruiz Esparza; Jonathan Alcantar-Fernandez; Benjamin Henson; Kristen Jepsen; Beatriz Olivares-Flores; Gisela Barrera-Badillo; Irma Lopez-Martinez; Jose E Ramirez-Gonzalez; Rita Flores-Leon; Stephen F Kingsmore; Alison Sanders; Allorah Pradenas; Benjamin White; Gary Matthews; Matt Hale; Ronald W McLawhon; Sharon L Reed; Terri Winbush; Ian H McHardy; Russel A Fielding; Laura Nicholson; Michael M Quigley; Aaron Harding; Art Mendoza; Omid Bakhtar; Sara H Browne; Jocelyn Olivas Flores; Diana G Rincon Rodriguez; Martin Gonzalez Ibarra; Luis C Robles Ibarra; Betsy J Arellano Vera; Jonathan Gonzalez Garcia; Alicia Harvey-Vera; Rob Knight; Louise C Laurent; Gene W Yeo; Joel O Wertheim; Xiang Ji; Michael Worobey; Marc A Suchard; Kristian G Andersen; Abraham Campos-Romero; Shirlee Wohl; Mark Zeller.
medrxiv; 2023.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2023.03.14.23287217

ABSTRACT

The maturation of genomic surveillance in the past decade has enabled tracking of the emergence and spread of epidemics at an unprecedented level. During the COVID-19 pandemic, for example, genomic data revealed that local epidemics varied considerably in the frequency of SARS-CoV-2 lineage importation and persistence, likely due to a combination of COVID-19 restrictions and changing connectivity. Here, we show that local COVID-19 epidemics are driven by regional transmission, including across international boundaries, but can become increasingly connected to distant locations following the relaxation of public health interventions. By integrating genomic, mobility, and epidemiological data, we find abundant transmission occurring between both adjacent and distant locations, supported by dynamic mobility patterns. We find that changing connectivity significantly influences local COVID-19 incidence. Our findings demonstrate a complex meaning of 'local' when investigating connected epidemics and emphasize the importance of collaborative interventions for pandemic prevention and mitigation.


Subject(s)
COVID-19
2.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.02.23.481658

ABSTRACT

Monitoring wastewater samples at building-level resolution screens large populations for SARS-CoV-2, prioritizing testing and isolation efforts. Here we perform untargeted metatranscriptomics on virally-enriched wastewater samples from 10 locations on the UC San Diego campus, demonstrating that resulting bacterial taxonomic and functional profiles discriminate SARS-CoV-2 status even without direct detection of viral transcripts. Our proof-of-principle reveals emergent threats through changes in the human microbiome, suggesting new approaches for untargeted wastewater-based epidemiology.

3.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.02.01.478759

ABSTRACT

Accurate, high-resolution environmental monitoring of SARS-CoV-2 traces indoors through sentinel cards is a promising approach to help students safely return to in-person learning. Because SARS-CoV-2 RNA can persist for up to a week on several indoor surface types, there is a need for increased temporal resolution to determine whether consecutive surface positives arise from new infection events or continue to report past events. Cleaning sentinel cards after sampling would provide the needed resolution, but might interfere with assay performance. We tested the effect of three cleaning solutions (BZK wipes, wet wipes, RNase Away) at three different viral loads: "high" (4 x 104 GE/mL), "medium" (1 x 104 GE/mL), and "low" (2.5 x 103 GE/mL). RNAse Away, chosen as a positive control, was the most effective cleaning solution on all three viral loads. Wet wipes were found to be more effective than BZK wipes in the medium viral load condition. The low viral load condition was easily reset with all three cleaning solutions. These findings will enable temporal SARS-CoV-2 monitoring in indoor environments where transmission risk of the virus is high and the need to avoid individual-level sampling for privacy or compliance reasons exists.

4.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.12.21.21268143

ABSTRACT

As SARS-CoV-2 becomes an endemic pathogen, detecting emerging variants early is critical for public health interventions. Inferring lineage prevalence by clinical testing is infeasible at scale, especially in areas with limited resources, participation, or testing/sequencing capacity, which can also introduce biases. SARS-CoV-2 RNA concentration in wastewater successfully tracks regional infection dynamics and provides less biased abundance estimates than clinical testing. Tracking virus genomic sequences in wastewater would improve community prevalence estimates and detect emerging variants. However, two factors limit wastewater-based genomic surveillance: low-quality sequence data and inability to estimate relative lineage abundance in mixed samples. Here, we resolve these critical issues to perform a high-resolution, 295-day wastewater and clinical sequencing effort, in the controlled environment of a large university campus and the broader context of the surrounding county. We develop and deploy improved virus concentration protocols and deconvolution software that fully resolve multiple virus strains from wastewater. We detect emerging variants of concern up to 14 days earlier in wastewater samples, and identify multiple instances of virus spread not captured by clinical genomic surveillance. Our study provides a scalable solution for wastewater genomic surveillance that allows early detection of SARS-CoV-2 variants and identification of cryptic transmission.

5.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.12.06.21267101

ABSTRACT

Monitoring severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on surfaces is emerging as an important tool for identifying past exposure to individuals shedding viral RNA. Our past work has demonstrated that SARS-CoV-2 reverse transcription-quantitative PCR (RT-qPCR) signals from surfaces can identify when infected individuals have touched surfaces such as Halloween candy, and when they have been present in hospital rooms or schools. However, the sensitivity and specificity of surface sampling as a method for detecting the presence of a SARS-CoV-2 positive individual, as well as guidance about where to sample, has not been established. To address these questions, and to test whether our past observations linking SARS-CoV-2 abundance to Rothia spp. in hospitals also hold in a residential setting, we performed detailed spatial sampling of three isolation housing units, assessing each sample for SARS-CoV-2 abundance by RT-qPCR, linking the results to 16S rRNA gene amplicon sequences to assess the bacterial community at each location and to the Cq value of the contemporaneous clinical test. Our results show that the highest SARS-CoV-2 load in this setting is on touched surfaces such as light switches and faucets, but detectable signal is present in many non-touched surfaces that may be more relevant in settings such as schools where mask wearing is enforced. As in past studies, the bacterial community predicts which samples are positive for SARS-CoV-2, with Rothia sp. showing a positive association. ImportanceSurface sampling for detecting SARS-CoV-2, the virus that causes coronavirus disease 2019 (COVID-19), is increasingly being used to locate infected individuals. We tested which indoor surfaces had high versus low viral loads by collecting 381 samples from three residential units where infected individuals resided, and interpreted the results in terms of whether SARS-CoV-2 was likely transmitted directly (e.g. touching a light switch) or indirectly (e.g. by droplets or aerosols settling). We found highest loads where the subject touched the surface directly, although enough virus was detected on indirectly contacted surfaces to make such locations useful for sampling (e.g. in schools, where students do not touch the light switches and also wear masks so they have no opportunity to touch their face and then the object). We also documented links between the bacteria present in a sample and the SARS-CoV-2 virus, consistent with earlier studies.


Subject(s)
Coronavirus Infections , COVID-19
6.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.10.19.21265226

ABSTRACT

Schools are high-risk settings for SARS-CoV-2 transmission, but necessary for children's educational and social-emotional wellbeing. While wastewater monitoring has been implemented to mitigate outbreak risk in universities and residential settings, its effectiveness in community K-12 sites is unknown. We implemented a wastewater and surface monitoring system to detect SARS-CoV-2 in nine elementary schools in San Diego County. Ninety-three percent of identified cases were associated with either a positive wastewater or surface sample; 67% were associated with a positive wastewater sample, and 40% were associated with a positive surface sample. The techniques we utilized allowed for near-complete genomic sequencing of wastewater and surface samples. Passive environmental surveillance can complement approaches that require individual consent, particularly in communities with limited access and/or high rates of testing hesitancy.


Subject(s)
COVID-19
7.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.07.16.452756

ABSTRACT

Environmental monitoring in public spaces can be used to identify surfaces contaminated by persons with COVID-19 and inform appropriate infection mitigation responses. Research groups have reported detection of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) on surfaces days or weeks after the virus has been deposited, making it difficult to estimate when an infected individual may have shed virus onto a SARS-CoV-2 positive surface, which in turn complicates the process of establishing effective quarantine measures. In this study, we determined that reverse transcription-quantitative polymerase chain reaction (RT-qPCR) detection of viral RNA from heat-inactivated particles experiences minimal decay over seven days of monitoring on eight out of nine surfaces tested. The properties of the studied surfaces result in RT-qPCR signatures that can be segregated into two material categories, rough and smooth, where smooth surfaces have a lower limit of detection. RT-qPCR signal intensity (average quantification cycle (Cq) can be correlated to surface viral load using only one linear regression model per material category. The same experiment was performed with infectious viral particles on one surface from each category, with essentially identical results. The stability of RT-qPCR viral signal demonstrates the need to clean monitored surfaces after sampling to establish temporal resolution. Additionally, these findings can be used to minimize the number of materials and timepoints tested and allow for the use of heat-inactivated viral particles when optimizing environmental monitoring methods.


Subject(s)
COVID-19 , Coronavirus Infections , Infections
8.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.11.19.20234229

ABSTRACT

Synergistic effects of bacteria on viral stability and transmission are widely documented but remain unclear in the context of SARS-CoV-2. We collected 972 samples from hospitalized patients with coronavirus disease 2019 (COVID-19), their health care providers, and hospital surfaces before, during, and after admission. We screened for SARS-CoV-2 using RT-qPCR, characterized microbial communities using 16S rRNA gene amplicon sequencing, and contextualized the massive microbial diversity in this dataset through meta-analysis of over 20,000 samples. Sixteen percent of surfaces from COVID-19 patient rooms were positive, with the highest prevalence in floor samples next to patient beds (39%) and directly outside their rooms (29%). Although bed rail samples increasingly resembled the patient microbiome over time, SARS-CoV-2 was detected less there (11%). Despite viral surface contamination in almost all patient rooms, no health care workers contracted the disease, suggesting that personal protective equipment was effective in preventing transmissions. SARS-CoV-2 positive samples had higher bacterial phylogenetic diversity across human and surface samples, and higher biomass in floor samples. 16S microbial community profiles allowed for high SARS-CoV-2 classifier accuracy in not only nares, but also forehead, stool, and floor samples. Across distinct microbial profiles, a single amplicon sequence variant from the genus Rothia was highly predictive of SARS-CoV-2 across sample types and had higher prevalence in positive surface and human samples, even compared to samples from patients in another intensive care unit prior to the COVID-19 pandemic. These results suggest that bacterial communities may contribute to viral prevalence both in the host and hospital environment. One Sentence SummaryMicrobial classifier highlights specific taxa predictive of SARS-CoV-2 prevalence across diverse microbial niches in a COVID-19 hospital unit.


Subject(s)
COVID-19
9.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.11.13.370387

ABSTRACT

One goal among microbial ecology researchers is to capture the maximum amount of information from all organisms in a sample. The recent COVID-19 pandemic, caused by the RNA virus SARS-CoV-2, has highlighted a gap in traditional DNA-based protocols, including the high-throughput methods we previously established as field standards. To enable simultaneous SARS-CoV-2 and microbial community profiling, we compare the relative performance of two total nucleic acid extraction protocols and our previously benchmarked protocol. We included a diverse panel of environmental and host-associated sample types, including body sites commonly swabbed for COVID-19 testing. Here we present results comparing the cost, processing time, DNA and RNA yield, microbial community composition, limit of detection, and well-to-well contamination, between these protocols. Accession numbersRaw sequence data were deposited at the European Nucleotide Archive (accession#: ERP124610) and raw and processed data are available at Qiita (Study ID: 12201). All processing and analysis code is available on GitHub (github.com/justinshaffer/Extraction_test_MagMAX). Methods summaryTo allow for downstream applications involving RNA-based organisms such as SARS-CoV-2, we compared the two extraction protocols designed to extract DNA and RNA against our previously established protocol for extracting only DNA for microbial community analyses. Across 10 diverse sample types, one of the two protocols was equivalent or better than our established DNA-based protocol. Our conclusion is based on per-sample comparisons of DNA and RNA yield, the number of quality sequences generated, microbial community alpha- and beta-diversity and taxonomic composition, the limit of detection, and extent of well-to-well contamination.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL